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COMMENT 
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MS 39217, USA 

Received 26 March 1986 

Abstract. Using a VAX 11/780, a random walk motion is studied in a random-field 
disordered system. A non-monotonic transport behaviour is observed as a function of 
local field intensity. In contrast to the random walk motion in random percolating fractals, 
the root mean square displacement here increases as a function of time faster than that of 
diffusion. A crossover from diffusion to disorder-induced transport is discussed and its 
spectral dimensionality is estimated. 

As a tool, the study of random walk motions has shown remarkable success in 
understanding the transport processes (Montroll and West 1979, Gefen et a1 1983, 
Rammal and Toulouse 1982, Pandey et a1 1984, Havlin and Ben-Avraham 1983, 
Zabolitzky 1984, Harris and Stinchcombe 1983) in random systems (particularly in 
fractals) and dynamics of various cooperative systems (Pandey et a1 1984, Harris and 
Stinchcombe (1983). Basic mechanisms governing a variety of global properties in 
many of these systems have at least one common feature: the ‘randomness’ (static or 
dynamic, thermodynamic or geometric). For example, the stochastic motion of a 
particle and the correlation of the thermodynamic fluctuations seem to share this 
common feature via common description (Pandey et a1 1984, Harris and Stinchcombe 
1983): the dynamic scaling theory which described how the root mean square displace- 
ment of the particle in its random walk motion in the asymptotic regime develops in 
time. The RMS displacement R of a random walk particle on a random percolating 
system in time t shows (Gefen et al 1983, Pandey et al 1984) a power-law dependence 
R -  t k  with 2 k = ( 2 v - p ) / ( 2 v + p - p ) ,  where v and p are the percolation exponents 
for the correlation length and percolation probability, respectively, and k is the 
conductivity exponent of the percolating network. The same exponent k relates (Pandey 
et a1 1984, Harris and Stinchcombe 1983) the thermodynamic correlation length & 
with the relaxation time of spins in magnets (Hohenberg and Halperin 1977). A 
computer simulation study of the random walk motion of a particle in a random 
percolating system provides a simple way not only to evaluate this critical dynamic 
exponent k,  but also to estimate the conductivity of the random system. Several such 
studies have been made in recent years in a variety of random systems (Pandey et a1 
1984, Havlin and Ben-Avraham 1983, Zabolitzky 1984). Here we present a simulation 
of the random walk motion of a particle in a random system which, to our knowledge, 
has not been studied so far. We also observe some interesting transport behaviour 
quite unexpected in view of the work mentioned above. 

The disorder system considered here is a random-field cubic lattice. At each site 
there is a field of strength B pointing in one of the six directions chosen randomly. 
In the computer simulation we prepare a sample (called lattice realisation) by assigning 
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one of the six directions chosen randomly to each site independently. A particular 
value is then set for the field intensity B, which determines the probability that a 
particle, once at a site, will hop from this site in its preset random direction. There 
are two extreme limits of B :  in the limit B = 0 our system reduces to a homogeneous 
cubic lattice and a random walk motion of a particle will show a Fickian diffusion. 
On the other hand, in the limit B = 1, the diffuser is locked in randomly directed fields 
leading to complete trapping; it moves in a deterministic way in the field directions 
until it reaches a point where six neighbours favour motion to this point in conflicting 
directions (a  frustrated state) where it is trapped forever. To begin a random walk 
transport in this random system, one of the sites is chosen randomly (called the local 
origin) and a particle (diffuser or ‘ant’) is then placed on it. To decide in which 
direction (to one of its six neighbouring sites) it will jump, a random number is selected 
and compared with the field B :  if it is less than B then the diffuser is moved to the 
neighbouring site in the pre-assigned random direction to this site; otherwise it is 
moved to any of the six neighbouring sites chosen randomly as in simple random walk 
motion. Accordingly, the corresponding displacement is updated and time is increased 
by unity. The process of selecting a neighbouring hopping site using the above 
prescription, moving the particle to it and updating time and displacement, is repeated 
again and again for a preset (maximum) number of steps. For a reliable estimate of 
the average RMS displacement and its dependence on time, the whole procedure is 
repeated for several, randomly chosen, local origins and on many independent samples 
as well. The data presnted here are generated on sample sizes 303, 403 and 503. We 
use 25 local origins, each on 20 lattice realisations for each B. All the data are generated 
using a VAX 11/780; the whole study has taken about 100 h of CPU time. 

In figure 1, we present a plot of RMS displacement against time t on a logarithmic 
scale for various values of field intensity starting from B = 0. As expected, B = 0 gives 
a very good straight line fit with an exponent k equal to which verifies Einstein’s 
diffusion law. For B = 0.1, we still obtain a good fit with the same diffusion exponent, 
although the values of R are smaller than its value without a field in the large time 
regime. Increasing the magnitude of B (from 0.1 to 0.5) we still observe similar diffusion 
behaviour in the initial time regime, but in the longer time regime, R develops faster 
with time t which leads to an asymptotic exponent k,  significantly larger than and 
presumably it ultimately approaches the drift value 1. Also, the magnitude of R is 
larger for higher values of B. The crossover behaviour from diffusion-like (in the small 
time regime) to effectively drift-like (in longer time) is more evident for higher values 
of B (0.4 and 0.5). Furthermore, one should note that the crossover time (tcr)  seems 
to decrease with increasing field intensity. Perhaps for the smaller values of B the 
relaxation time becomes much larger than the observation time, t = lo6 taken to 
approach its faster (effectively drift-like) take-off limit. It is worth pointing out here 
that a similar crossover behaviour from diffusion to drift occurs in a homogeneous 
system with a global field (i.e. the same field at all sites in the same direction) (Pandey 
1984a). This implies that the local random fields may induce the transport in the same 
way as the global homogeneous field. Nevertheless, the local fields govern the transport 
behaviour in dramatically different ways from that of the global field, as will be seen 
below. 

On increasing the field intensity further, above a certain value Bch, motion of the 
particle becomes slower (see figure 2 and compare it with figure 1): the RMS displace- 
ment R traversed in time t reduces on increasing the magnitude of B. The two types 
of motion, diffusive (in small time regime T ~ )  and random-field-induced faster (in long 
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Figure I .  R M S  displacement against time f on a log-log plot. Number of local origins 
N = 25, number of samples NRUN = 20 for all values of B, except for B = 0 which has 
N = 20, NRUN = 5.  Symbols with corresponding values of field intensity: V, ( B  = 0); 0, 
( B = O . I ) ;  0, ( B = 0 . 2 ) ;  A, ( B = 0 . 4 ) ;  A,  (8=0.5) .  ((I), ( 6 )  and ( c )  are for samples of 303, 
403 and 503, respectively. 
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Figure 2. Same as figure 1 but for higher values of field intensity. Symbols with their field 
intensities are: A, ( E  = 0.9); ., ( E  = 0.95); A, ( B  = 0.99); 0, ( E  = 0.999). 

time regime T ~ ) ,  still persist, but now in an opposite way to the behaviour described 
above. The crossover regime t,, in which the field-induced motion takes over from 
diffusion motion becomes larger at higher field values. Finally, at the extreme value 
of B = 1, the motion completely ceases due to the random field (i.e. the particle is 
localised). 

Non-monotonic properties of the transport as a function of field intensity B, 
described above, are caused by the disorder (i.e. the random fields). Similar behaviour 
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Figure 2. Continued 

has already been observed in a random percolating system in the presence of a global 
bias field (Barma and Dhar 1983, White and Barma 1984, Dhar 1984, Pandey 1984a, 
Stauffer 1985, Gefen and Goldhirsch 1985), where the competition between bias field 
and ramified geometry (the barriers due to dangling ends and deep valleys in the 
direction of bias) lead to non-monotonic behaviour. However, the two disordered 
systems, random field (studied here) and random percolating systems (in the presence 
of a global bias), are quite different as far as the transport of the diffuser is concerned. 
The random percolating systems are very well studied and most of their self-similar 
properties (like fractal dimensionality, spectral dimensionality and their relation to 
transport indices) are reasonably well understood. On the other hand, for the transport 
properties of the random-field systems, this is to our knowledge the first attempt to 
illustrate their behaviour using computer simulations. 

In order to explore the spectral properties of the underlying random system, it 
would be interesting to study its spectral (fracton) dimensionality (Alexander and 
Orbach 1982) which we define using the relation (Rammal and Toulouse 1983, Pandey 
er al 1984) s -  t d s ’ 2 ,  where s is the number of distinct visited sites in time t and d,  is 
the spectral dimensionality. Now if we evaluate the number of distinct visited sites in 
time t ,  then the slope of a log-log plot of s against t may give an estimate for d,. 
Some typical plots are shown in figure 3(a)  Clearly, the data in the initial time regime 
( t up to 6 x lo4) suggest d ,  = 1.8(-2), but in the long time regime it decreases systemati- 
cally. Figure 3(b) shows the variation of the effective fracton dimensionality d :  with 
t. It would be interesting to extend this simulation at least an order of magnitude 
more to see where it settles in time but obviously such resources are out of reach to 
us at the present. One must also note that stretching the observation time alone is not 
sufficient to understand the asymptotic behaviour well, as the finite-size effects start 
playing an important role in determining the long time behaviour. 

Obviously, to gain more precise data, as in most of the computer experiments, one 
has to work with larger samples for longer time. Nevertheless, a deviation in the 
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Figure 3. ( a )  Number of distinct visited sites against time plotted on a log-log scale. 
Statistics: N = 2 5 ,  NRUN = 20. Samples: 503, 0, ( B  = 0.9); 303, A, ( B  = 0.9). ( b )  Plot of 
effective spectral dimensionality d ,  against time on a semi-log scale. 

magnitude of d:  from about two in the small time regime to about 0.8 in the long time 
regime seems to suggest that there is more than one power law regime in which the 
simple diffusive motion is followed by a rapid transport in the long time regime. As 
a note of caution, although we have presented data on different sample sizes, it would 
be worth testing them on much bigger samples. 

In conclusion, our simple study suggests that in a random-field disordered system, 
the variation of the R M S  displacement with t is quite different from that in the usual 
random fractals (i.e. percolating systems). Contrary to a slow anomalous motion in 
random percolating systems (Gefen et a1 1983, Pandey et a1 1984), the random walk 
motion is enhanced here in random-field systems leading to disorder-induced transport. 
A similar disorder-induced transport was predicted by Heinrichs and  Kumar (1984), 
but in a different context (i.e. in a one-dimensional system in the presence of random 
fields) (Pandey 1984b). We observe a non-monotonic behaviour in transport on 
increasing the local field intensity. Clearly, different power laws on a different time 
scale and  the non-monotonic variation in the RMS displacement with time t may 
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give a variation in the effective diffusion constant D, defined by R =2D,tk. Such 
behaviour may be related to the recent theoretical observation of the classical transport 
in modulated structures (Golden et a1 1985). Vibrational properties of the random-field 
system seem to suggest more than one mode, leading to a variation in effective spectral 
dimensionality. A similar study in  two dimensions (part I1 of this series, in preparation) 
also shares some o f  these findings. 

The author would like to thank A Kerstein, S D Mahanti and D Stauffer for useful 
discussions. Computer time was supported by the Academic Research Computer 
Center at Jackson State University. 
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